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1 Introduction

This paper is, in essence, a walk through my short journey thus far in mathematics. I
start with extremal graph theory, arguably the first area that really sparked my excitement,
and move through several ideas that drew my attention along the way, particularly from
extremal combinatorics. The path eventually leads to the theory of graphons, which I arrived
at somewhat naturally. This is not necessarily a comprehensive survey, but a personal
exploration of the concepts and questions that have shaped my thinking so far.

2 Preliminaries

2.1 Extremal Graph Theory

My first encounter, which quickly turned into a fascination, with extremal graph theory was
in my discrete mathematics course taught by Prof. A. Razborov. One classical question
that we were introduced to was of the form, given a fixed forbidden subgraph H, what is
the maximum number of edges a graph on n vertices can have without containing H as
a (not necessarily induced) subgraph? This number is called the Turán number, denoted
ex(n,H). What is often considered the first result in extremal graph theory is Mantel’s
theorem, which answers this question for the special case when H = K3 is a triangle.

Theorem 2.1. (Mantel’s theorem) Every n-vertex triangle-free graph has at most ⌊n2/4⌋
edges, i.e., ex(n,K3) = ⌊n2/4⌋.

To generalize this theorem from triangles to arbitrary cliques, we first construct the Turán
graph.

Definition 2.2. The Turán graph Tn,r is defined to be the complete n-vertex r-partite
graph with part sizes differing by at most 1 (so each part has size ⌊n/r⌋ or ⌈n/r⌉.

For example, T3,1 = K3 and T10,3 = K3,3,4.

Theorem 2.3. (Turán’s theorem) The Turán graph Tn,r maximizes the number of edges
among all n-vertex Kr+1-free graphs. It is also the unique maximizer.

Corollary 2.4. |E(Tn,r)| ∼
(r

2
) (

n
r

)2.

2.2 Graph Homomorphisms

While extremal graph theory traditionally focuses on maximizing or minimizing the number
of edges under subgraph constraints, many of its central questions can be reframed more
generally in terms of how frequently small patterns occur within larger graphs. This motivates
the study of graph homomorphisms (adjacency-preserving maps), which capture not just
the presence of a subgraph, but the frequency with which it appears.
Note. Although graph homomorphisms were not the next topic I encountered chronologically,
presenting them here provides a natural and useful continuation of the ideas introduced in
the previous section.
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Definition 2.5. For two finite simple graphs F and G, a homomorphism from F to G is a
map ϕ : V (F ) → V (G) such that if uv ∈ E(F ), then ϕ(u)ϕ(v) ∈ E(G). We define

Hom(F,G) = {homomorphisms from F to G},

and

hom(F,G) = |Hom(F,G)|.

Definition 2.6. Define the F -homomorphism density in G as

t(F,G) = hom(F,G)
|V (G)||V (F )| ,

i.e., the probability that a random map of V (F ) into V (G) is a homomorphism.

Note. This definition works well with dense graphs, which are what we consider in this
paper, but other normalizations are more appropriate for sparse graphs.

Example 2.7. Using this new notion of homomorphism densities, we can recall Corollary 2.4
to write

t(K2, Tn,r) = hom(K2, Tn,r)
n2 ∼

2
(r

2
) (

n
r

)2
n2 = 1 − 1

r
.

Similarly, the triangle density can be written

t(K3, Tn,r) ∼
6
(r

3
) (

n
r

)3
n3 =

(
1 − 1

r

)(
1 − 2

r

)
.

Example 2.8.
(i) A walk in G is a homomorphism of a path into G, so hom(Pk, G) counts the number

of walks with k − 1 steps in G.
(ii) In terms of colorings, hom(G,Kq) counts the number of colorings of the graph G with

q colors, satisfying the usual condition that adjacent nodes must be assigned different
colors.

As the simple examples above illustrate, homomorphism numbers have many applications.
We now present several properties that emphasize their utility and what they can express.

Proposition 2.9.
(i) If F1 and F2 are node-disjoint, then

hom(F1 ∪ F2, G) = hom(F1, G)hom(F2, G).

(ii) If F is connected and G1 and G2 are node-disjoint, then

hom(F,G1 ∪G2) = hom(F,G1) + hom(F,G2).
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(iii)

hom(F,G1 ×G2) = hom(F,G1)hom(F,G2).

Proof.
(i) Since F1 and F2 are node-disjoint, a homomorphism ϕ : V (F1 ∪ F2) → V (G) is

equivalent to specifying a homomorphism ϕ1 : V (F1) → V (G) and a homomorphism
ϕ2 : V (F2) → V (G) independently.

(ii) Since G1 and G2 are node-disjoint, a homomorphism ϕ : V (F ) → V (G1 ∪G2) must
map all of F into just one of G1 or G2.

(iii) Each homomorphism ϕ : V (F ) → V (G1 × G2) corresponds uniquely to a pair of
homomorphisms ϕ1 : F → G1 and ϕ2 : F → G2. ■

Theorem 2.10. [Lov12, Theorem 5.29] Either one of the simple graph parameters hom(., G)
and hom(G, .) determines a simple graph G.

Proof Sketch. Consider two simple graphs G,G′ such that inj(F,G) = inj(F,G′) for every
simple graph F , where inj(F,G) is the number of injective homomorphisms from F into G.
Then G and G′ have injective homomorphisms into each other and thus are isomorphic. A
nontrivial result (see [Lov12, Section 5.4]) shows that the injective homomorphism counts
are determined by the ordinary homomorphism counts. Hence, if hom(F,G) = hom(F,G′)
for all simple graphs F , then G ∼= G′.

2.3 Entropy in Combinatorics

We now return to the actual chronological path I took. After first encountering extremal
graph theory, I soon found myself drawn to the field of extremal combinatorics as a whole,
to which I give credit to Extremal Combinatorics by S. Jukna [Juk11] and The Probabilistic
Method by N. Alon and J. H. Spencer [AS16]. After lots of reading, I realized that I was
especially excited by the elegance and power of entropy, as it offered a way to reason about
combinatorial structure through information, rather than direct counting. In this section, I
introduce the basic definitions and ideas behind entropy, with a focus on results that will
later connect to graph theory and extremal problems.

Definition 2.11. Let X be a random variable taking values in some range S. For each
s ∈ S, let ps = P(X = s). The (binary) entropy of X is defined by

H(X) =
∑
s∈S

ps log2
1
ps

=
∑
s∈S

−ps log2 ps,

i.e., the expected “information gain” of X.

Remark 2.12. Going forward, we use log to denote log2, the binary logarithm.

We now prove several basic properties of entropy.
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Lemma 2.13. (Uniform Bound) If X is a random variable with finite support S,

H(X) ≤ log |S|.

Equality holds if and only if X is uniformly distributed on S.

Proof. Since the function f(x) = −x log x is concave, by Jensen’s inequality, we have

H(X) =
∑
s∈S

f(ps) ≤ |S|f
(∑

s∈S ps

|S|

)
= |S|f

( 1
|S|

)
= log |S|.

For the entropy of joint random variables (X,Y ), we write,

H(X,Y ) = H(Z) =
∑
x,y

−P(X = x, Y = y) logP(X = x, Y = y).

In particular, H(X,Y ) = H(X) +H(Y ) if X and Y are independent.

Definition 2.14. Given jointly distributed random variables X and Y , we define the
conditional entropy,

H(X | Y ) =
∑

y

P(Y = y)H(X | Y = y),

i.e., H(X | Y ) is the information gain of X given a particular value of Y , averaged over the
range of values that Y can take.

Example 2.15.
(i) If X and Y are independent, H(X | Y ) = H(X).
(ii) If X is completely determined by Y , H(X | Y ) = 0.

Lemma 2.16. (Chain Rule)

H(X,Y ) = H(X) +H(Y | X).

Proof. We write p(x) = P(X = x). Then

H(Y | X) =
∑

x

p(x)H(Y | X = x) =
∑

x

−p(x)
∑

y

p(y | x) log p(y | x)

=
∑

x

∑
y

−p(x, y) log
(
p(x, y)
p(x)

)
=
∑
x,y

−p(x, y) log p(x, y) +
∑

x

p(x) log p(x)

= H(X,Y ) −H(X).

■

Lemma 2.17. (Subadditivity)

H(X,Y ) ≤ H(X) +H(Y ).

More generally,

H(X1, . . . , Xn) ≤ H(X1) + · · · +H(Xn).
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Proof. Let f(x) = log(1/x). Then

H(X) +H(Y ) −H(X,Y ) =
∑
x,y

(−p(x, y) log p(x) − p(x, y) log p(y) + p(x, y) log p(x, y))

=
∑
x,y

p(x, y) log
(
p(x, y)
p(x)p(y)

)

=
∑
x,y

p(x, y)f
(
p(x)p(y)
p(x, y)

)

≥ f

(∑
x,y

p(x, y)p(x)p(y)
p(x, y)

)
= f(1) = 0.

We can iterate to obtain the general case.

Lemma 2.18.

H(X | Y ) ≤ H(X).

Proof. By the chain rule and subadditivity,

H(X | Y ) = H(X,Y ) −H(Y ) ≤ H(X)

Theorem 2.19.

2H(X,Y, Z) ≤ H(X,Y ) +H(X,Z) +H(Y, Z).

Proof. By the chain rule and Lemma 2.18,

H(X,Y ) = H(X) +H(Y | X)

H(X,Z) = H(X) +H(Z | X)

H(Y,Z) = H(Y ) +H(Z | Y ).

Summing,

H(X,Y ) +H(X,Z) +H(Y,Z) ≥ 2H(X) + 2H(Y | X) + 2H(Z | X,Y )

= 2H(X,Y, Z).

This theorem is a special case of a much more useful inequality, Shearer’s inequality.

Theorem 2.20. (Shearer’s Inequality) Let A1, . . . , As ⊆ [n], where each i ∈ [n] appears in
at least k sets Ai. Let X1, . . . , Xn be jointly distributed discrete random variables. Writing
XA = (Xi)i∈A, we have

kH(X1, . . . , Xn) ≤
∑
j∈[s]

H(XAj ).
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3 Graph Limits

The next topic in my studies was the theory of graph limits. My interest in it was deepened
by the fact that I was concurrently taking the real analysis sequence here, so the idea that
large, discrete graphs could converge to a continuous object was not only surprising, but
also very satisfying.

As we saw in Section 2.1, many questions in extremal graph theory ask about the
asymptotic behavior of graphs as the number of vertices grows large, so it is a natural
idea that large graphs should be studied not as discrete objects, but as approximations of
some continuous limit. However, there are several challenges in making this idea rigorous.
Graphs are inherently combinatorial, and standard notions of convergence, such as pointwise
convergence of adjacency matrices, fail to capture the structural similarities we care about.

This motivates the development of a continuous theory of limits for graphs, one in which
graphs are viewed through the lens of their statistical behavior. The framework that achieves
this is the theory of graph limits, where the central objects are graphons, which provide not
only a natural language for describing convergence and similarity, but also connect with
powerful analytic tools, such as compactness and continuity. I develop this theory step by
step in this section.

3.1 Graphons

To define a meaningful limit object for dense graphs, Lovász and Szegedy introduced graphons
[LS06], analytic objects that generalize the adjacency matrix of a graph into a measurable
function on the unit square.

Definition 3.1. A graphon is a symmetric measurable function W : [0, 1]2 → [0, 1].

Every graph G has an associated graphon WG.

Definition 3.2. Given a graph G with n vertices labeled 1, . . . , n, we define its associated
graphon WG : [0, 1]2 → [0, 1] by first partitioning [0, 1] into n equal-length intervals I1, . . . , In

and setting WG to be 1 on all Ii × Ij where ij is an edge of G, and 0 on all other Ii × Ij .

Definition 3.3. A step graphon W with k steps consists of first partitioning [0, 1] into k
intervals I1, . . . , Ik and then setting W to be a constant on each Ii × Ij .

Example 3.4. Consider the bipartite graph on 2n vertices with one vertex part {v1, . . . , vn}
and the other {w1, . . . , wn}, with edges viwj whenever i ≤ j. The graph, its adjacency
matrix, and associated graphon are pictured below.
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Intuitively, we can think of W (x, y) as describing the “edge density” or probability of an
edge between the points x and y in the unit interval. In this setting, the interval [0, 1]
replaces the finite vertex set of a graph, and the function W plays the role of a generalized
adjacency matrix.

To develop the theory of graph limits further, we need a way to measure how “close” two
graphons are. There are two natural and ultimately equivalent approaches to defining this
similarity, one based on the cut distance, and the other based on comparing homomorphism
densities.

3.2 Cut Distance

The cut distance provides a natural notion of similarity between graphons, measuring how
close two graphons are up to relabeling of the underlying vertex space. It is based on the
cut norm, which generalizes the notion of edge density across subsets of a graph.

Definition 3.5. The cut norm of a measurable W : [0, 1]2 → R is defined as

∥W∥□ = sup
S,T ⊆[0,1]

∣∣∣∣∫
S×T

W

∣∣∣∣ ,
where the supremum is taken over all measurable subsets S, T ⊆ [0, 1].

To define the cut distance in a meaningful, label-invariant way, we need to formalize what it
means to relabel a graphon. This is done using measure-preserving maps, which intuitively
represent relabelings that preserve the uniform distribution on the unit interval.

Definition 3.6. We say that ϕ : [0, 1] → [0, 1] is a measure preserving map if

λ(A) = λ(ϕ−1(A)) ∀ measurable A ⊆ [0, 1].

We say that ϕ is an invertible measure preserving map if there is another measure preserving
map ψ : [0, 1] → [0, 1] such that ϕ ◦ ψ and ψ ◦ ϕ are both identity maps outside sets of
measure zero.

Given W : [0, 1]2 → R and an invertible measure preserving map ϕ : [0, 1] → [0, 1], we write

W ϕ(x, y) = W (ϕ(x), ϕ(y)).

This can be seen as a relabeling of the underlying vertex space, analogous to permuting
the vertices of a finite graph. With this in place, we define the cut distance between two
graphons as the smallest possible cut norm distance over all such relabelings.

Definition 3.7. Given two symmetric measurable functions U,W : [0, 1]2 → R, we define
the cut distance to be

δ□(U,W ) = inf
ϕ

∥U −W∥□

= inf
ϕ

sup
S,T ⊆[0,1]

∣∣∣∣∫
S×T

(U(x, y) −W (ϕ(x), ϕ(y)))dxdy
∣∣∣∣ ,
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where the infimum is taken over all invertible measure preserving maps ϕ : [0, 1] → [0, 1]. We
define the cut distance between two graphs G and G′ by the cut distance of their associated
graphons, i.e., δ□(G,G′) = δ□(WG,WG′).
Definition 3.8. We say that a sequence of graphs or graphons converges in cut metric if
they form a Cauchy sequence with respect to δ□. Furthermore, we say Wn converges to W
in cut metric if δ□(Wn,W ) → 0 as n → ∞.

It is important to note that δ□ is not a true metric on the space of all graphons, because two
graphons that differ only by relabeling have zero distance. To fix this, we identify graphons
that are equivalent in this sense.
Definition 3.9. Let W̃0 be the set of graphons where any pair of graphons with cut distance
zero are considered the same point in the space. This is a metric space under cut distance,
δ□.

The following foundational results demonstrate the power and completeness of the graphon
formalism. The proofs are beyond the scope of this paper.
Theorem 3.10. The set of graphs is dense in (W̃0, δ□).

Theorem 3.11. The graphon space (W̃0, δ□) is compact.

Theorem 3.12. The graphon space (W̃0, δ□) is the completion of the space of graphs with
respect to the cut metric.

Together, these results tell us that every sequence of large graphs, provided it doesn’t
escape to infinity, has a limiting object in the form of a graphon. Moreover, this limit
is well-defined in the cut metric, and small-scale statistics (like homomorphism densities)
behave continuously with respect to this metric. This is precisely what makes graphons such
a powerful and elegant tool in modern combinatorics.

3.3 Homomorphism Densities in Graphons

We now revisit the notion of homomorphism densities in the broader context of graphons.
Earlier, we defined the homomorphism density t(F,G) to be the probability that a random
map from V (F ) to V (G) preserves all adjacencies. In the graphon setting, the vertex set
of the host graph becomes the unit interval [0, 1], and instead of a finite summation over
vertex maps, we take an integral over all possible assignments of the vertices of F into [0, 1].
Definition 3.13. Let F be a graph and W a graphon. The F -density in W is defined to be

t(F,W ) =
∫

[0,1]V (F )

∏
ij∈E(F )

W (xi, xj)
∏

i∈V (F )
dxi.

This definition is a natural extension of the discrete case. In fact, when W = WG is the
graphon associated to a finite graph G, this integral computes the exact same quantity as
t(F,G), since the graphon WG takes only finitely many values and is constant on blocks of a
partition of [0, 1]. Importantly, t(F,W ) can be interpreted as the limiting relative frequency
of observing a copy of F inside some large, random graph modeled by W . This perspective
leads us to an important type of convergence for sequences of graphons.
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Definition 3.14. We say that a sequence of graphons Wn is left-convergent if for every
graph F , t(F,Wn) converges as n → ∞. We say that this sequence left-converges to a
graphon W if limn→∞ t(F,Wn) = t(F,W ).

The terminology “left-convergent” comes from the perspective that the test graphs F are
placed on the left of the homomorphism hom(F,G). That is, we’re looking at how well
various small graphs F embed into the sequence Wn, and whether the pattern statistics they
produce are converging. This raises the question, does this notion of convergence match our
earlier, more analytic notion of convergence in the cut distance?

Amazingly, the answer is yes.

Theorem 3.15. A sequence of graphons is left-convergent if and only if it is a Cauchy
sequence with respect to the cut metric.

3.4 Applications

Now that we have developed the formalism of graphons and convergence in the cut metric,
here are a number of examples that illustrate how graphons can be used to analyze large
graphs and reason about structural properties such as randomness and symmetry.

Example 3.16. Let G(n, p) denote the Erdős–Rényi random graph on n vertices where
each edge is included independently with probability p ∈ (0, 1). As n → ∞, the sequence
(G(n, p))n≥1 converges in the cut metric to the constant graphon W (x, y) = p. This example
shows that random graphs with a fixed edge probability can be modeled in the limit by a
deterministic, constant graphon. The randomness is encoded in the uniform distribution
over the unit interval, while the edge structure is encoded in the constant value of W .

Example 3.17. Let Gn = K⌊n/2⌋,⌈n/2⌉ be the complete bipartite graph on n vertices. The
graphon limit of this sequence is the step-function graphon:

W (x, y) =
{

1 if x ≤ 1/2 < y or y ≤ 1/2 < x,

0 otherwise.

This limit graphon captures the bipartite structure of Gn in the form of a block matrix. In
general, structured deterministic graphs correspond to simple, piecewise-constant graphons.

Example 3.18. A sequence of graphs (Gn) is said to be quasirandom if it behaves like
G(n, p) in terms of edge distribution and subgraph densities. One characterization of
quasirandomness is that the sequence converges in the cut metric to the constant graphon
W (x, y) = p and satisfies

t(C4, Gn) → p4.

4 Extremal Graph Theory and Entropy Revisited

Finally, we arrive at my favorite section, which is what I am currently still exploring and
having lots of fun with. Having developed the machinery of graphons and their applications,
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we can now return to extremal graph theory with a more powerful set of tools. One of the
major advantages of the graphon framework is that it allows us to recast extremal problems
as variational problems over a compact space.

4.1 Sidorenko’s Conjecture

Sidorenko’s conjecture, one of the central open problems in extremal graph theory, becomes
especially elegant when expressed in terms of graphons.

Proposition 4.1. Let F be a bipartite graph. Then for every graphon W , we have:

t(F,W ) ≥ t(K2,W )|E(F )|.

This inequality trivially holds for constant graphons (i.e., the Erdős–Rényi limit).
We say that a graph F is Sidorenko if the condition in the conjecture holds, i.e., t(F,W ) ≥
t(K2,W )|E(F )|. I end this paper by proving that several basic graphs are Sidorenko using
the techniques discussed throughout the paper.

Theorem 4.2. K2,2 is Sidorenko, i.e., t(K2,2,W ) ≥ t(K2,W )4.

Proof. Claim. t(K1,2,W ) ≥ t(K2,W )2.

t(K1,2,W ) =
∫

x,y,y′
W (x, y)W (x, y′)

=
∫

x

(∫
y
W (x, y)

)2

≥
(∫

x,y
W (x, y)

)2
= t(K2,W )2.

Claim. t(K2,2,W ) ≥ t(K1,2,W )2.

t(K2,2,W ) =
∫

x,y,z,z′
W (x, z)W (x, z′)W (y, z)W (y, z′)

=
∫

x,y

(∫
z
W (x, z)W (y, z)

)2

≥
(∫

x,y,z
W (x, z)W (y, z)

)2
= t(K1,2,W )2.

Putting the two claims together gives us our result.

Theorem 4.3. The 3-edge path is Sidorenko.

Proof 1. Let P4 be the 3-edge path, let W be a graphon, and let g(x) =
∫

y W (x, y) represent
the “degree” of vertex x. We have

t(P4,W ) =
∫

w,x,y,z
W (x,w)W (x, y)W (z, y) =

∫
x,y,z

g(x)W (x, y)W (z, y).
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By relabling, we can also write

t(P4,W ) =
∫

x,y,z
W (x, y)W (z, y)g(x).

Then,

t(P4,W ) =
√∫

x,y,z
g(x)W (x, y)W (z, y)

√∫
x,y,z

W (x, y)W (z, y)g(x)

≥
∫

x,y,z

√
g(x)W (x, y)W (z, y)

√
g(x)

=
∫

y

(∫
x

√
g(x)W (x, y)

)2

≥
(∫

x,y

√
g(x)W (x, y)

)2

=
(∫

x
g(x)3/2

)2

≥
(∫

x
g(x)

)3
=
(∫

x,y
W (x, y)

)3
.

Excitingly, this theorem can also be proven using entropy methods.

Proof 2. Let P4 denote the 3-edge path, and let G be a graph. An element of Hom(P4, G)
is a walk of length three. We randomly choose walk XY ZW in G as follows.

(i) XY is a uniformly random edge of G (i.e., choose an edge of G uniformly at random,
then choose one of its endpoints uniformly to be X, and the other to be Y );

(ii) Z is a uniform random neighbor of Y ;
(iii) W is a uniform random neighbor of Z.

A key observation is that Y Z is also distributed as a uniform random edge of G. Indeed,
conditioned on the choice of Y , the vertices X and Z are independent and uniformly
distributed neighbors of Y . Hence XY and Y Z are identically distributed, so Y Z is a
uniform random edge. Similarly, ZW is also a uniformly random edge.
Since X and Z are conditionally independent given Y , we have

H(Z | X,Y ) = H(Z | Y ) and similarly H(W | X,Y, Z) = H(W | Z).

Furthermore,
H(Y | X) = H(Z | Y ) = H(W | Z),
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since XY, Y Z,ZW are all identically distributed as uniform random edges. Now, we compute
the joint entropy,

H(X,Y, Z,W ) = H(X) +H(Y | X) +H(Z | X,Y ) +H(W | X,Y, Z)

= H(X) +H(Y | X) +H(Z | Y ) +H(W | Z)

= H(X) + 3H(Y | X)

= 3H(X,Y ) − 2H(X)

= 3 log(2|E(G)|) − 2H(X)

≥ 3 log(2|E(G)|) − 2 log |V (G)|.

This proves the entropy lower bound:

log hom(P4, G) ≥ H(X,Y, Z,W ) ≥ 3 log(2|E(G)|) − 2 log |V (G)|.

Exponentiating both sides and normalizing,

t(P4, G) = hom(P4, G)
|V (G)|4

≥
(2|E(G)|

|V (G)|2
)3

= t(K2, G)3.

5 Conclusion

I hope that my reflection of my journey through the many topics I explored this quarter has
been somewhat interesting to read. I think that what has stayed with me most throughout
this exploration is not any particular result, but the almost cathartic feeling that emerges
when seemingly disparate ideas begin to align. This process of discovering unexpected
connections has been the most rewarding part of my experience so far, and though I do not
yet know where this path will lead, I remain eager to continue following it.
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