
MATH 20510. Analysis in Rn III (accelerated)

Based on lectures by Prof. Donald Stull
Notes taken by Andrew Hah

The University of Chicago

Spring 2025

1 Measure Theory

Definition 1.1. A family of sets A is called a ring if, for every A, B ∈ A,

(i) A ∪ B ∈ A

(ii) A \ B ∈ A

Definition 1.2. A ring A is called a σ-ring if for any {An}∞
1 ⊆ A,

∞⋃
1

An ∈ A.

Note. This implies that
⋂∞

1 An ∈ A.

Definition 1.3. ϕ is a set function on a ring A if for every A ∈ A,

ϕ(A) ∈ [−∞, ∞].

Definition 1.4. A set function ϕ is additive if for any A, B ∈ A such that
A ∩ B = ∅,

ϕ(A ∪ B) = ϕ(A) + ϕ(B).

Definition 1.5. A set function ϕ is countably additive if for any {An} ⊆ A

such that Ai ∩ Aj = ∅, ∀i ̸= j,

ϕ

(
n⋃
1

An

)
=

n∑
1

ϕ(An).



In the last two we assume that there are no A, B ∈ A such that ϕ(A) =
−∞, ϕ(B) = ∞.

Remark 1.6. If ϕ is an additive set function,

(i) ϕ(∅) = 0.
(ii) If A1, . . . , An are pairwise disjoint then ϕ(

⋃n
1 An) =

∑n
1 ϕ(An).

(iii) ϕ(A1 ∪ A2) + ϕ(A1 ∩ A2) = ϕ(A1) + ϕ(A2).
(iv) If ϕ is nonnegative and A1 ⊆ A2 then ϕ(A1) ≤ ϕ(A2).
(v) If B ⊆ A and |ϕ(B)| < ∞ then ϕ(A \ B) = ϕ(A) − ϕ(B).

Theorem 1.7. Let ϕ be a countably additive set function on a ring A.
Suppose {An} ⊆ A such that A1 ⊆ A2 ⊆ . . . and A =

⋃∞
1 An ∈ A. Then

ϕ(An) → ϕ(A) as n → ∞.

Proof. Set B1 = A1 and Bn = An \ An−1. Note

(i) {Bn} is pairwise disjoint.
(ii) An = B1 ∪ B2 ∪ · · · ∪ Bn.
(iii) A =

⋃∞
1 Bn.

Hence ϕ(An) =
∑∞

1 ϕ(Bj), ϕ(A) =
∑∞

1 ϕ(Bj) and the conclusion follows.

Definition 1.8. An interval I = {(ai, bi)}n
1 of Rn is the set of points

x = (x1, . . . , xn) such that ai ≤ xi ≤ bi or ai < xi ≤ bi, etc. where ai ≤ bi.

Note. ∅ is an interval.

Definition 1.9. If A is the union of a finite number of intervals, we say A

is elementary.

We denote the set of elementary sets by E.

Definition 1.10. If I is an interval of Rn, we define the volume of I by

vol(I) =
n∏
i

(bi − ai).
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If A = I1 ∪ I2 ∪ · · · ∪ Ik is elementary, and the intervals are disjoint, then

vol(A) =
k∑
1

vol(Ij).

Remark 1.11. (i) E is a ring, but not a σ-ring.
(ii) If A ∈ E, then A can be written as a finite union of disjoint intervals.
(iii) If A ∈ E, then vol(A) is well-defined.
(iv) vol is an additive set function on E, and vol ≥ 0.

Definition 1.12. A nonnegative set function ϕ on E is regular if ∀A ∈ E,
∀ε > 0, ∃ open G ∈ E, G ⊇ A and closed F ∈ E, F ⊆ A, such that

ϕ(G) ≤ ϕ(A) + ε, ϕ(A) ≤ ϕ(F ) + ε.

Note. vol is regular.

Definition 1.13. A countable open cover of E ⊆ Rn is a collection of open
elementary sets {An} such that E ⊆

⋃∞
1 An.

Definition 1.14. The Lebesgue outer measure of E ⊆ Rn is defined as

m∗(E) = inf
∞∑
1

vol(An).

where inf is taken over all countable open covers of E.

Remark 1.15. (i) m∗(E) is well-defined.
(ii) m∗(E) ≥ 0.
(iii) If E1 ⊆ E2 then m∗(E1) ≤ m∗(E2).

Theorem 1.16. (i) If A ∈ E, then m∗(A) = vol(A).
(ii) If E =

⋃∞
1 En then m∗(E) ≤

∑∞
1 m∗(En).

Proof.

Definition 1.17. Let A, B ⊆ Rn.

(i) A△B = (A \ B) ∪ (B \ A).
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(ii) d(A, B) = m∗(A△B).
(iii) We say An → A if lim

n→∞
d(An, A) = 0.

Definition 1.18. If there is a sequence of elementary sets {An} such that
An → A then we say A is finitely m-measurable and we write A ∈ MF (m).

Definition 1.19. If A is the countable union of finitely m-measurable
sets, we say that A is m-measurable (Lebesgue measurable) and we write
A ∈ M(m).

Theorem 1.20. M(m) is a σ-ring and m∗ is countably additive on M(m).

Definition 1.21. The Lebesgue measure is the set function defined on M(m)
by

m(A) = m∗(A), ∀A ∈ M(m).

To summarize,

set function domain properties
vol E ≥ 0, additive, E-regular

m∗ ⊆ Rn
≥ 0, m∗(A) = vol(A) ∀A ∈ E,
countably subadditive

m M(m)
≥ 0, m(E) = m∗(E) ∀E ∈ M(m),
countable additivity(!)

4


	Measure Theory

